
User Guide v.1.0
YAFS (Yet Another Fog Simulator) is a simulator tool based on Python of architectures such as: Fog Computing

ecosystems for several analysis regarding with the placement of resources, cost deployment, network
design, ... IoT environments are the most evident fact of this type of architecture.

Created: may/23/2019
Last modification: may/23/2019

using version Git: sep/12/2019

Developers: 
 Isaac Lera & Carlos Guerrero

Authors acknowledge financial support through grant project ORDCOT with number TIN2017-88547-P (AEI/FEDER, UE)
�1

https://en.wikipedia.org/wiki/Fog_computing
https://en.wikipedia.org/wiki/Internet_of_things

YAFS resources
• Public repository: 

https://github.com/acsicuib/YAFS

• Documentation: 
https://yafs.readthedocs.io/en/latest/introduction/
index.html

• It’s open-published in IEEE Journal: 
https://ieeexplore.ieee.org/document/8758823

• Developed at: http://ordcot.uib.es/results/

!2

https://github.com/acsicuib/YAFS
https://yafs.readthedocs.io/en/latest/introduction/index.html
https://yafs.readthedocs.io/en/latest/introduction/index.html
https://ieeexplore.ieee.org/document/8758823
http://ordcot.uib.es/results/

INDEX

• Installation

• Your first execution

• Programming guide

1. the topology

2. the application/s (a composition of services)

3. the workloads or users or endpoints

4. the allocation of the services

5. the “deploying” in the simulator

• Basic structure of a project

• Analysing the results

• Explaining the simulator: yafs.Core

• Dynamic strategies

• References

• Future lines

!3

Installation notes:
• The explanation of the installation and the execution of the examples is

addressed to novel python programmers. We encourage the use of IDEs
with more flexibility to manage complex programs such as Spider or
Pycharm.

• In this manual, we don’t explain the integration of YAFS with these IDE, nor
give details of how to configure logging parameters, and other internal
functionalities.

• We’ve not included basic commands: cd, ls, etc.

• This manual is tested on Ubuntu 18.04.3 LTS.

Python 2.7 is required

You can ignore some steps according to system configuration.

!4

Installation

Git and pip command are required.

Installing git and pip, in console:

• sudo apt install git python-pip

!5

CONDA Installation
• ANACONDA is a distribution of python libraries. It is not necessary

to install it but personally, we recommend it since ANACONDA
includes several libraries very useful for analysing the YAFS results.

• Note: install Anaconda2 (for python2.7)

• You can follow the official documentation to install it.

• https://www.anaconda.com/

• or other manuals

• https://www.digitalocean.com/community/tutorials/how-to-
install-anaconda-on-ubuntu-18-04-quickstart

!6

https://www.anaconda.com/
https://www.digitalocean.com/community/tutorials/how-to-install-anaconda-on-ubuntu-18-04-quickstart
https://www.digitalocean.com/community/tutorials/how-to-install-anaconda-on-ubuntu-18-04-quickstart

Cloning project

In console:

• git clone https://github.com/acsicuib/YAFS

!7

https://github.com/acsicuib/YAFS

Installing third-party
libraries

The most simple way to install the dependencies is using the yaml* file
from the YAFS folder. It configures a python environment. 
Steps:

• (base) … /YAFS$ conda env update -f yafs.yml

• (base) … $ conda activate yafs

• (yafs) …$ (contratulations! YAFS dependencies are installed)

Or you can manually install the library:

• $pip install networkx (see all the packages in yafs.yml)

• etc.

!8 * Thanks to David Perez: https://github.com/davidperezabreu/toshare

https://github.com/davidperezabreu/toshare

Your first execution
To run some `complex` python scripts is necessary to define the working
path. We give the most simple recipe to do it: we’re going to create a shell
script to run python programs.

• …/YAFS/src$ vi run_tutorial1.sh (you can use another editor)

• …$chmod +x run_tutorial1.sh

• …$./run_tutorial1.sh

• Note: Post execution, in src folder, you have two new csv files with the
results of the execution.

• To analyse the results, we need to understand the environment. Let’s do it

!9

export PYTHONPATH=$PYTHONPATH:src/:examples/Tutorial/ 
python examples/Tutorial/main1.py

Programming guide
In this section, we introduce the steps to create our IoT environment.

These steps are orientative to define the basics, but the structure of a simulation is too big to be included
in these slides. Please, Check out the main.py files in the examples/Tutorial/ folder for understanding
how to combine all these pieces.

These steps are identified in the code of those examples

Thus, we need to define:

1. the topology

2. the application/s (a composition of services)

3. the workloads or users or endpoints

4. the allocation of the services

5. the routing and orchestration of messages

6. and finally, the “deploying” in the simulator

!10

The topology
The topology is a graph. Nodes and edges with some
mandatory attributes.

You can include more attributes

We explain two ways of create a topology:

• Json-based syntax

• NetworkX graphs constructors

!11

https://yafs.readthedocs.io/en/latest/introduction/basic.html#network-topology

https://yafs.readthedocs.io/en/latest/introduction/basic.html#network-topology

Json-based topology
You load the json file with these lines:

and the syntax is:

!12

 t = Topology()
 dataNetwork = json.load(open(‘yourNetworkDefinitionFile.json’))
 t.load(dataNetwork)

{
 "link": [
 {
 "PR": 5,
 "s": 0,
 "BW": 75000,
 "d": 2
 },
 (…)
],
 "entity": [
 {
 "RAM": 14,
 "id": 0,
 "IPT": 900
 },
(…)
]}

EDGES

NODES

The topology

NetworkX constructors
• The topology class relies the management of the graph on the NetworkX library (Topology.G)

• NetworkX library is awesome! Thus, you can take a look several tutorials: https://
networkx.github.io/

• Generating graphs with Networkx is easy 
https://networkx.github.io/documentation/networkx-1.10/tutorial/tutorial.html and defining
the mandatory attributes as well.

• NX manages several types of graph formats: https://networkx.github.io/documentation/
stable/reference/readwrite/index.html

!13

t = Topology()
t.G=nx.erdos_renyi_graph(100,0.15)
#for each node and edge you have to create the mandatory attributes
nx.set_node_attributes(t.G,values=valuesIPT,name="IPT")  
nx.set_node_attributes(t.G,values=valuesRAM,name=“RAM")
and the same with the edges

The topology

https://networkx.github.io/
https://networkx.github.io/
https://networkx.github.io/documentation/networkx-1.10/tutorial/tutorial.html
https://networkx.github.io/documentation/stable/reference/readwrite/index.html
https://networkx.github.io/documentation/stable/reference/readwrite/index.html

the Application
• YAFS supports the deployment of multiples applications.

• Apps are based on DAG

• You can define an app via API  
or using JSON-based syntax

• The API way is defined in the readthedocs and of course, multiples
options are available.

• The json-based syntax is limited to a ‘simple’ exchange of
messages between services. In this case, the load function
transform the syntax in API calls. It means, this integration is not in
the YAFS core functions,

!14

https://yafs.readthedocs.io/en/latest/introduction/basic.html#application

https://yafs.readthedocs.io/en/latest/introduction/basic.html#application

JSON-based app definition
We use the code of examples/MapReduceModel/exp/
appDefinition.json to describe this syntax

There are four parts: modules, messages, transmissions,
and descriptive data.

The descriptive data identify the app. This information
should be unique:

!15

 "id": 0,
 "name": "0"

the Application

 "id": 1,
 "name": “MapReduce_1”

JSON-based app definition
The modules define the services of an app. Mandatory
attributes are: id <int>, and name<str>

!16

 "module": [
 {
 "type": "CLOUD",
 "id": 0,
 "HD": 0,
 "name": "CLOUD_0"
 },
 {
 "type": "REPLICA",
 "id": 1,
 "HD": 2,
 "name": "0_0"
 },
 {
 "type": "REPLICA",
 "id": 2,
 "HD": 2,
 "name": "0_1"
 },
 {
 "type": "REPLICA",
 "id": 3,
 "HD": 2,
 "name": "0_2"
 }

the Application

 "module": [
 {
 "id": 0,
 "name": "S0"
 },
 {
 "id": 1,
 "name": "S1"
 }

App1

Along this explanation, we’re going to guess 
 that the user (WLi) does not need the M1-message

JSON-based app definition
Messages are the requests among services. Mandatory
attributes are: id<int>, name<str>, s<str>, d<str>,
bytes<int>, and instructions<int>

!17

the Application

 "message": [
 {
 "d": "S0",
 "bytes": 2770205,
 "name": "M.USER.APP1",
 "s": "None",
 "id": 0,
 "instructions": 0
 },
 {
 "d": "S0",
 "bytes": 2770205,
 "name": "M0_0",
 "s": "S0",
 "id": 1,
 "instructions": 20
 },
 {
 "d": "S1",
 "bytes": 22,
 "name": “M0_1”,
 "s": "S0",
 "id": 2,
 "instructions": 0
 },

 "module": [
 {
 "id": 0,
 "name": "S0"
 },
 {
 "id": 1,
 "name": "S1"
 }

App1

This message (M1) has to be defined using 
 the API or modifying the load function

See: examples/Tutorial/main1.py

JSON-based app definition
Transmissions represents how the service process the requests
and generates other requests. Fractional is the probability to
propagate the input message. A same module manages multiples
messages.

!18

 "transmission": [
 {
 "module": "S0",
 "message_in": “M.USER.APP1”
 },
 {
 "message_out": “M0_0",
 "message_in": “M.USER.APP1”,
 "module": "S0",
 "fractional": 0.5
 },
 {
 "module": "S0",
 "message_in": "M0_0"
 },
 {
 "message_out": “M0_1",
 "message_in": "M.USER.APP1",
 "module": "S0",
 "fractional": 1.0
 },
 {

 "message_in": “M0_1",
 "module": "S1",
 },
],

the Application

 "module": [
 {
 "id": 0,
 "name": "S0"
 },
 {
 "id": 1,
 "name": "S1"
 }

 "message": [
 {
 "d": "S0",
 "bytes": 2770205,
 "name": "M.USER.APP1",
 "s": "None",
 "id": 0,
 "instructions": 0
 },
 {
 "d": "S0",
 "bytes": 2770205,
 "name": "M0_0",
 "s": "S0",
 "id": 1,
 "instructions": 20
 },
 {
 "d": "S1",
 "bytes": 22,
 "name": “M0_1”,
 "s": "S0",
 "id": 2,
 "instructions": 0
 },

JSON-based app definition
NOTE! The json-based syntax is not fully defined, so the API is
still necessary to define other functionalities such as
broadcasting. For this reason, the json-based function is not
part of YAFS library. Therefore, if you want to use this syntax it is
necessary to include / adapt /copy the function in your project:  
examples/MapReduceModel/main.py (currently the best
version)

def create_applications_from_json(data):

!19

the Application

User / Workloads / End
points

• It means, the points on the network where the initial
messages of an app are generated. We called Population

• We can use a json-based syntax (with limited
functionalities) or the API

• The simple way is using json-based syntax.

!20

 """
 POPULATION algorithm
 """
 dataPopulation = json.load(open(pathExperiment+'usersDefinition.json'))
 pop = JSONPopulation(name=“Statical",json=dataPopulation) ***

***In some examples this function is done inside the code in the main.py file

Population json-based
syntax

The syntax is simple: an array with every workload

!21

{
 "sources": [
 {
 "id_resource": 20, An identifier of the source

 "app": “0",
 "message": "M.USER.APP.0",
 "lambda": 229
 },
 {
 "id_resource": 33,
 "app": "1",
 "message": "M.USER.APP.1",
 "lambda": 223
 },

the app identifier
the message name

and the lambda value of an exponential distribution*

*the json-based syntax only works with this type of distribution

but it’s easy to include the others (yafs/distribution.py)

• In this case, we have different apps where users requests in
different times, with a unique dynamic distributions for each app.
Both bold lines assign a different distribution.

• Green line is explained in next slides since we need to explain the
allocation of services and the routing message process.

!22

 dataPopulation = json.load(open(path + 'usersDefinition.json'))
 # Each application has an unique population politic
 # For the original json, we filter and create a sub-list for each app politic
 for aName in apps.keys():
 data = []
 for element in dataPopulation["sources"]:
 if element['app'] == aName:
 data.append(element)

 distribution = exponentialDistribution(name="Exp", lambd=random.randint(100,200), seed= int(aName)*100+it)
 pop_app = DynamicPopulation(name="Dynamic_%s" % aName, data=data, iteration=it, activation_dist=distribution)
 s.deploy_app(apps[aName], placement, pop_app, selectorPath)

Population json-based
syntax

Note: each app has a deploy

Code from: examples/MCDA/main.py

Service Allocation
• The service allocation is managed by the Placement

class. The placement can be defined using json-based
syntax or API functions.

• The syntax is simple:

• And, in the code:

!23

{
 "initialAllocation": [
 {
 "module_name": "S0",
 "app": "0",
 "id_resource": 153
 },
 {
 "module_name": “S1",
 "app": "0",
 "id_resource": 153
 },

 module name

app identifier

node identifier

placementJson = json.load(open(path + 'allocDefinition%s.json' % case))
placement = JSONPlacement(name="Placement", json=placementJson)

Message routing and
orchestration

This function tries to respond to all these questions:

• What rout does take a message to reach a service? (routing problem)

• Where is this service deployed? (discovery problem)

• How many services of the same type are deployed? (scalability issues)

• What does it happen if a network link fail? or a service is unavailable in
the moment that the message achieves the node where the service is
deployed? (failure management)

It seems complicated but there are many examples implemented that can
serve you.

!24

Message routing and
orchestration

In each project there are different files that implement all this
functionalities. Let’s start with the “most simple” case
(example/Tutorial/main1.py)

MinimunPath is an extension of Selection class. The only
mandatory function is get_path.

!25

 """--
 SELECTOR algorithm
 """
 #Their "selector" is actually the shortest way, there is not type of orchestration algorithm.
 #This implementation is already created in selector.class,called: First_ShortestPath
 selectorPath = MinimunPath()

MinimunPath

!26

class MinimunPath(Selection):

 def get_path(self, sim, app_name, message, topology_src, alloc_DES, alloc_module, traffic,from_des):
 """
 Computes the minimun path among the source elemento of the topology and the localizations of the module

 Return the path and the identifier of the module deployed in the last element of that path
 """
 node_src = topology_src
 DES_dst = alloc_module[app_name][message.dst]

 print ("GET PATH")
 print ("\tNode _ src (id_topology): %i" %node_src)
 print ("\tRequest service: %s " %message.dst)
 print ("\tProcess serving that service: %s " %DES_dst)

 bestPath = []
 bestDES = []

 for des in DES_dst: ## In this case, there are only one deployment
 dst_node = alloc_DES[des]
 print ("\t\t Looking the path to id_node: %i" %dst_node)

 path = list(nx.shortest_path(sim.topology.G, source=node_src, target=dst_node))

 bestPath = [path]
 bestDES = [des]

 return bestPath, bestDES

!27

class MinimunPath(Selection):

 def get_path(self, sim, app_name, message, topology_src, alloc_DES, alloc_module, traffic,from_des):

This function routes a message from a node to another node.

The signature of this function is:
sim is type of yafs.core (it contains all information of the simulation)
app_name is the identifier of the app implied (redundant)
message: type message
topology_src: identifier of the node src
alloc_des: identifies the type of service/module that can dealt the message
alloc_module: internal variable of the yafs.core that contains the deployed services/modules
traffic: provides a reference of the number of messages that there are in the network (only for stats)
from_des: is the initial type of service that sends this message (only necessary in case of some failure)

!28

 for des in DES_dst: ## In this case, there are only one deployment
 dst_node = alloc_DES[des]
 print ("\t\t Looking the path to id_node: %i" %dst_node)

 path = list(nx.shortest_path(sim.topology.G, source=node_src, target=dst_node))

 bestPath = [path]
 bestDES = [des]

 return bestPath, bestDES

This function has to return an array of possible paths and an array of possible identifier of services.
With returning one, it is enough. Otherwise, an empty array can be returned ([[]])

Example:

A path is: [86, 242, 160, 164, 130, 301, 281, 216] a list of node identifiers

A des is a module identifier: 23

In this case, we look for the shortest path among all nodes where deployed services are.

We can use NetworkX library algorithms !

https://networkx.github.io/documentation/stable/reference/algorithms/index.html

https://networkx.github.io/documentation/stable/reference/algorithms/index.html

Message routing and
orchestration

• In previous example, the shortest path function is a heavy
computational task in huge networks. So, we can
implement a cache.

• And some time, we can compute other specific
characteristics of our study:

!29

Let’s see the file: examples/MapReduceModel/selection_multipleDeploys.py

!30

 def get_path(self, sim, app_name, message, topology_src, alloc_DES, alloc_module, traffic, from_des):
 node_src = topology_src #entity that sends the message

 # print "Message ",message.name
 #print "Alloc DES ",alloc_DES
 DES_dst = alloc_module[app_name][message.dst] #module sw that can serve the message

 # print "Enrouting from SRC: %i -<->- DES %s"%(node_src,DES_dst)

 #The number of nodes control the updating of the cache. If the number of nodes changes, the cache is totally cleaned.
 currentNodes = len(sim.topology.G.nodes)
 if not self.invalid_cache_value == currentNodes:
 self.invalid_cache_value = currentNodes
 self.cache = {}

 if (node_src,tuple(DES_dst)) not in self.cache.keys():
 self.cache[node_src,tuple(DES_dst)] = self.compute_DSAR(node_src, alloc_DES, sim, DES_dst,message)

 path, des = self.cache[node_src,tuple(DES_dst)]

 return [path], [des]

we check cache coherency considering
 the number of nodes. you can use other indicator or variable

Does this “exchange” is already computed?

We look for a more complex path considering the speed of the links

Message routing and
orchestration

• In case of failures you need to implement other function

!31

Let’s see the file: examples/DynamicFailuresOnNodes/selection_multipleDeploys.py

!32

 def get_path_from_failure(self, sim, message, link, alloc_DES, alloc_module, traffic, ctime, from_des):

 idx = message.path.index(link[0])

 if idx == len(message.path):
 return [],[]
 else:
 node_src = message.path[idx-1]
 node_dst = message.path[len(message.path)-1]

 path, des = self.get_path(sim, message.app_name, message, node_src, alloc_DES, alloc_module, traffic,
 from_des)

(…)

The path is a sequence of node identifiers [86, 242, 160, 164, 130, 301, 281, 216]

The function get_path_from_failure is called when a node of the path is not reachable.

The point where the path fails

We try to find another route from a previous node

We use the same function to address the situation

Message routing and
orchestration

• Perhaps, one of the more complex implementation is at:

• If there’re enough services, the algoritm deploy a new one

!33

examples/MCDA/WAPathSelectionNPlacement.py

des = sim.get_DES_from_Service_In_Node(best_node,app_name,service)

logging.info("RESULTS: bestNODE: %i, DES: %s" % (best_node, des))

if des == []:
 logging.info ("NEW DEPLOYMENT IS REQUIRED in node: %i ",best_node)
 des = self.doDeploy(sim, app_name, service, best_node)

Note: Get_path is activated in each message request, feel free to introduce your strategies

Deploying the apps
• When we have all previous ingredients, we need to

combine them, since every app has a population, a
placement, and a selection.

!34

 #For each deployment the user - population have to contain only its specific sources
 for aName in apps.keys():
 print "Deploying app: ",aName
 pop_app = JSONPopulation(name="Statical_%s"%aName,json={})
 data = []
 for element in pop.data["sources"]:
 if element['app'] == aName:
 data.append(element)
 pop_app.data["sources"]=data

 s.deploy_app(apps[aName], placement, population, selectorPath)

 s.run(stop_time, test_initial_deploy=False, show_progress_monitor=False) #TEST to TRUE

The last line performs the simulation

Basic structure

• To sum up, your project could have the next files:

experiment / network.json 
experiment / app.json 
experiment / population.json 
experiment / allocation.json 
main.py 
selector.py 
jsonPopulation.py 
logging.ini

!35

Analysing the results
• A simulation generates at least two csv-based files. Attribute description is

explained at: 

• This makes it possible to analyze any aspect of the infrastructure. For
example, traffic between two nodes or between links, the latency of a
particular message or set of messages, the performance of an app instead
another one, etc. 
All samples have a timestamp which makes it possible to work them as a
time series.

• In the projects, there are files called “analyse_results”. The analysis
depends on the nature of the project. Some of them are complex than
others.

• The point is that we can use libraries as Pandas.

!36

https://yafs.readthedocs.io/en/latest/introduction/basic.html#results

https://yafs.readthedocs.io/en/latest/introduction/basic.html#results

!37

Tabla 1
id type app message DES.src DES.dst TOPO.src
1 COMP_M SimpleCase ServiceA M.A 0 2 1
1 SINK_M SimpleCase Actuator M.B 2 1 0
2 COMP_M SimpleCase ServiceA M.A 0 2 1
2 SINK_M SimpleCase Actuator M.B 2 1 0

postruning examples/Tutorial/main.py -> Results.csv

ID-Service-source

ID-Service-dst

DES.src-deployed node

…

!38

Tabla 1
id type app message DES.src DES.dst TOPO.src
1 COMP_M SimpleCase ServiceA M.A 0 2 1
1 SINK_M SimpleCase Actuator M.B 2 1 0
2 COMP_M SimpleCase ServiceA M.A 0 2 1
2 SINK_M SimpleCase Actuator M.B 2 1 0

postruning examples/Tutorial/main.py -> Results.csv

Type

service time
DES.dst-deployed node

Tabla 1-1
id TOPO.dst module.src service time_in time_out time_emit time_reception
1 0 Sensor 4 110. 110.0 100.0 110.001
1 2 ServiceA 0 111.005 111.00 110.0051 111.005
2 0 Sensor 4 210.001 210.0 200.0 210.001
2 2 ServiceA 0 211.00 211.0 210.00 211.0

!39

Tabla 1
id type src dst app latency message ctime size buffer
1 LINK 1 0 SimpleCase 10.001 M.A 100 1000 0
1 LINK 0 2 SimpleCase 1.0005 M.B 110.00511950565932 500 0
2 LINK 1 0 SimpleCase 10.001 M.A 200 1000 0
2 LINK 0 2 SimpleCase 1.0005 M.B 210.00511950565934 500 0

postruning examples/Tutorial/main.py -> Results_link.csv

latency time between node_1 and node_0

simulation time

messages waiting in
 the WHOLE network

Analysing the results

• In this code, we analise multiple simulations (validating
the IC) -the for-. We load the CSV file using Pandas. In the
fourth line, we obtain a list of initial requests (ids) where
there is a “user” (module.src == None) and we group by
app identifier and user allocation.

• Note: Each communication of each user has an unique id
along all messages exchanges

!40

for it in range(nsimulations):
 fCSV = "Results_%s_%i_%i.csv"%(case,timeSimulation,it)
 df = pd.read_csv(pathSimple+fCSV)
 dtmp = df[df["module.src"]=="None"].groupby(['app','TOPO.src'])['id'].apply(list)

from examples/ConquestService/analyse_results.py

Explaining the simulator:
yafs.Core

• YAFS is based on a Discrete Event simulator implemented on
Simpy (another wonderful library)

• Every transmission or message computation is an event that
it is managed by Simpy processes, they are generated in the
initialization of the IoT environment by a pool of MM1
queues.

• The var in Sim.env (yafs.core) contains the Simpy
environment and also can control the time and the events.

• For example, the current time can be obtained via: 
sim/self.env.now

!41

https://simpy.readthedocs.io/en/latest/

https://simpy.readthedocs.io/en/latest/

yafs.core

• We try to comment on all the functions and variables
inside yafs.core, but of course, the level of detail is never
enough.

• The internal functions start with double underline
“__name”, these functions should be NOT used/modified.

• The rest of the functions generate the process to control
each workload point, and the deployment of services in
the network.

!42

Creating dynamic strategies
• YAFS supports dynamic policies (population, placement,

etc.). All of them can follow a distribution. Furthermore,
we can create new ones.

• There are three projects to show how to implement these
dynamic strategies: DynamicAllocation,
DynamicFailuresOnNodes, and DynamicWorkload. Check
out!

• In this brief guide, we only explain the complex way to
introduce other strategies.

!43

Creating dynamic strategies
• We use the project: examples/ConquestService to explain how to make it.

In this project, the services change the allocations according with some
rules.

• We define a class that manage these changes: CustomStrategy

• This strategy will start/activate following this distribution:
deterministicDistributionStartPoint

• Besides, this class has multiple input parameters, including the “core”: sim

• we finally deploy this process in the simulator using: deploy_monitor

!44

 dStart = deterministicDistributionStartPoint(stop_time/2.,stop_time / 2.0 /10.0, name="Deterministic")
 evol = CustomStrategy(pathResults)
 s.deploy_monitor("EvolutionOfServices", evol, dStart, **{"sim": s, "routing": selectorPath,"case":case, "stop_time":stop_time, "it":it})

Python “__functions”
• The simulator will only call to the input function…

• Thus, deploy_monitor only accepts functions.  
Python functions are defined by the following signature: 
def __call__()

• We can “call” classes defining this structure inside the
class

!45

 dStart = deterministicDistributionStartPoint(stop_time/2.,stop_time / 2.0 /10.0, name="Deterministic")
 evol = CustomStrategy(pathResults)
 s.deploy_monitor("EvolutionOfServices", evol, dStart, **{"sim": s, "routing": selectorPath,"case":case, "stop_time":stop_time, "it":it})

Author recommendation - Book:  
Fluent Python: Clear, Concise, and Effective Programming

!46

class CustomStrategy():

 def __init__(self,pathResults):

 def __call__(self, sim, routing,case, stop_time, it):

 self.activations +=1

 routing.invalid_cache_value = True

…

custom parameters

…

The code in __call__ will be trigged in each step of the
deterministicDistributionStartPoint

Future lines

• The current version of YAFS already integrates the geo-
localised movement of workloads/users for design VoT
and other types of mobile environments. This work is still
in progress. There is an “example” in examples/
mobileTutorial but it is not yet tested or documented.

• Python 2.7 has a final countdown (https://
pythonclock.org/). Next version and future improvements
in yafs.core structure will be compatible with python 3.6

!47

https://pythonclock.org/
https://pythonclock.org/

References
Please use this cite to reference us: 

Isaac Lera and Carlos Guerrero and Carlos Juiz YAFS: A simulator for IoT
scenarios in fog computing. IEEE Access. vol. 7, no. 1, pp. 91745-91758 (2018)
https://doi.org/10.1109/ACCESS.2019.2927895 [link] [read online]

@article{Lera2019yafs
author={I. {Lera} and C. {Guerrero} and C. {Juiz}},
journal={IEEE Access},
title={YAFS: A Simulator for IoT Scenarios in Fog Computing},
year={2019},
volume={7},
number={},
pages={91745-91758},
doi={10.1109/ACCESS.2019.2927895},
ISSN={2169-3536},
month={December},
}

!48

https://doi.org/10.1109/ACCESS.2019.2927895
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8758823

Acknowledge

• YAFS is part of the project:

!49

Energy and performance optimization for resource and data
management in Cloud of Things with Semantic Networks. TIN2017-
88547-P (MINECO/AEI/FEDER, UE).

http://ordcot.uib.es/

